Skip to content

Problems 1-10

Problem 2.1

\[ \begin{align} W &= -4\pi G\int_0^\infty dr \, r\rho(r)M(r) \\ &= -G \int_0^\infty dr \, \frac{1}{r}\left(M \frac{dM}{dr}\right) \\ &= -\frac{G}{2}\int_0^\infty dr \, \frac{d}{dr}\left(\frac{M^2}{r}\right) - \frac{G}{2}\int_0^\infty dr \, \frac{M^2}{r^2} \end{align} \]

Since \(M\) is finite, the term \(M^2/r\) vanishes as \(r\to\infty\). Now, for \(r\to 0\), we have that \(M^2/r \sim r^5 \rho^2\) which implies that this term also vanishes at \(r=0\) provided that \(\rho(r)\) diverges more slowly than \(r^{-5/2}\). Thus, the first term in the last line above is zero and we obtain the desired result:

\[ W = -\frac{G}{2}\int_0^\infty dr \, \frac{M^2(r)}{r^2} \]

Problem 2.2

For a spherical potential

\[ \begin{align} W_{jk} &= - \int d^3\mathbf{x} \, \rho(r) x_j \frac{\partial \Phi}{\partial x_k} \\ &= - \int d^3\mathbf{x} \, \rho(r) r \left(\frac{d\Phi}{dr} \right)\frac{x_j x_k}{r^2} \\ &= -\int d^3\mathbf{x} \, \rho(r) r \left(\frac{GM(r)}{r^2} \right)\frac{x_j x_k}{r^2} \\ &= -G\int_0^\infty dr \, r \rho(r) M(r) \int d\Omega \, \frac{x_j x_k}{r^2} \\ &= -\frac{4\pi}{3} G \delta_{jk} \int_0^\infty dr \, r \rho(r) M(r) \\ &= \frac{1}{3} W \delta_{jk} \end{align} \]

One way to calculate the angular integral is to use Schur's lemma. Or we can represent the Cartesian coordinates in terms of spherical coordinates and perform the integral explicitly.

Problem 2.3

Using Gauss's theorem

Draw a cylindrical surface of radius \(R\) and height \(h\) aligned with the \(z\)-axis,

\[ 2\frac{d\Phi}{dz} = 4\pi G \Sigma (\pi R^2) \implies \frac{d\Phi}{dz} = 2\pi G \Sigma, \]

thus,

\[ \Phi(z) = 2\pi G \Sigma |z| + \mathrm{constant}. \]

Using Poisson's equation

In cylindrical coordinates, Poisson's equation reads

\[ \frac{1}{R}\frac{\partial}{\partial R}\left(R \frac{\partial \Phi}{\partial R}\right) + \frac{\partial^2 \Phi}{\partial z^2} = 4\pi G \Sigma \delta(z). \]

Since the potential only depends on \(z\), the first term vanishes and we have

\[ \frac{d^2 \Phi}{dz^2} = 4\pi G\Sigma \delta(z). \]

which can be integrated twice to obtain the same result as before.

Problem 2.4

a. Laplace's equation

For \(\Phi = \ln[r(1 + |\cos\theta|)]\) we have

  1. The potential is not defined at \(r=0\).
  2. At \(\theta = \pi/2\) the potential is continuous but not differentiable.

At any other location all derivatives are smooth and well defined

\[ \begin{align} \nabla^2 \Phi &= \frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2 \frac{\partial \Phi}{\partial r}\right) + \frac{1}{r^2 \sin\theta}\frac{\partial}{\partial \theta}\left(\sin\theta \frac{\partial \Phi}{\partial \theta}\right) \\ &= \frac{1}{r^2} + \frac{1}{r^2\sin\theta}\frac{d}{d\theta}\left(\sin\theta \frac{d}{d\theta}(\ln(1 + |\cos\theta|))\right) \\ \end{align} \]

If \(0 < \theta < \pi/2\)

\[ \nabla^2 \Phi = \frac{1}{r^2} + \frac{1}{r^2\sin\theta}\frac{d}{d\theta}\left(\sin\theta \frac{d}{d\theta}(\ln(1 + \cos\theta))\right) = \frac{1}{r^2} - \frac{1}{r^2} = 0, \]

and if \(\pi/2 < \theta < \pi\)

\[ \nabla^2 \Phi = \frac{1}{r^2} + \frac{1}{r^2\sin\theta}\frac{d}{d\theta}\left(\sin\theta \frac{d}{d\theta}(\ln(1 - \cos\theta))\right) = \frac{1}{r^2} - \frac{1}{r^2} = 0. \]

In both cases, the Laplacian vanishes. Thus, the density is zero everywhere except at \(r=0\) and \(\theta = \pi/2\). Because of the absolute value, we conclude that a potential of the form \(\Phi(R, z) = v_c^2\ln(R + |z|) + \mathrm{const}\) introduces a \(\delta\)-function at \(\theta = \pi/2\), that is \(\rho(R, z) = \Sigma(R)\delta(z)\).

b. Disk density

We can integrate Poisson's equation across a thin pillbox of thickness \(2h\) around the plane \(z=0\).

\[ \begin{align} \int_{-h}^{+h} dz \, \nabla^2 \Phi &= \left(\frac{\partial \Phi}{\partial z}\right)_{-h}^{h} = 4\pi G \Sigma(R) \\ &= \frac{v_c^2}{R + h} - \left(-\frac{v_c^2}{R + h}\right) = \frac{2v_c^2}{R + h} \\ &\to \frac{2v_c^2}{R} \quad\text{for } R \to \infty \end{align} \]

That is

\[ \Sigma(R) = \frac{v_c^2}{2\pi G R}. \]

Problem 2.5

a. Constant circular speed

\[ M(r) = 2\pi A \int_0^r dr' = 2\pi A r \quad\text{for } r < R_0, \]

and \(M(r > R_0) = M(R_0) = 2\pi A R_0\). The cicular speed is then

\[ v_c^2(r) = 2\pi AG \begin{cases} 1 & r < R_0 \\ R_0/r & r \geq R_0 \end{cases} \]

b. Flattened model

Consider now the density profile

\[ \rho(m^2) = \frac{A}{2m^2} \quad\text{with}\quad m^2 = R^2 + \frac{z^2}{q^2}. \]

The circular velocity is

\[ \begin{align} v_c^2(R) &= 4\pi G \sqrt{1 - e^2}\int_0^R dm \, \frac{m^2\rho(m^2)}{\sqrt{R^2 - m^2 e^2}} \\ &= 2\pi AG \sqrt{1 - e^2}\int_0^R dm \, \frac{1}{\sqrt{R^2 - m^2 e^2}} \\ &= 2\pi AG q \frac{\arcsin e}{e} \end{align} \]

Note that in the limit \(q\to 1\) (i.e. \(e\to 0\)) we have that \(\arcsin e / e \to 1\) and we recover the result from part (a).

c. Razor-thin limit

At fixed \(R < R_0\) the body model extends in \(z\) only for \(z < q\sqrt{R_0^2 - R^2}\), and the density in the limit \(q\to 0\) becomes

\[ \begin{align} \Sigma(R) &= \lim_{q\to 0} \int_{-\infty}^{+\infty} dz \, \rho(m^2) = 2\int_{0}^{q\sqrt{R_0^2 - R^2}} dz \, \frac{A}{2(R^2 + z^2/q^2)} \\ &= Aq \int_0^{\sqrt{R_0^2 - R^2}} \frac{du}{R^2 + u^2} = \frac{Aq}{R}\arctan\left(\frac{\sqrt{R_0^2 - R^2}}{R}\right) \\ &= \frac{Aq}{R}\arccos\left(\frac{R}{R_0}\right). \end{align} \]

Problem 2.6

\[ \begin{align} R^2 + (a + |z|)^2 &= a^2\sinh^2u \sin^2v + (a + a \cosh u |\cos v|)^2 \\ &= a^2(\sinh^2u \sin^2v + 1 + 2\cosh u |\cos v| + \cosh^2u \cos^2v) \\ &= a^2(\cosh^2u + \cos^2v + 2\cosh u |\cos v|) \\ &= a^2(\cosh u + |\cos v|)^2 \end{align} \]

The Kuzmin potential is then

\[ \begin{align} \Phi_K &= -\frac{GM}{\sqrt{R^2 + (a + |z|)^2}} = -\frac{GM}{a(\cosh u + |\cos v|)} \\ &= -\frac{GM}{a}\frac{1}{\cosh u + |\cos v|}\frac{\cosh u - |\cos v|}{\cosh u - |\cos v|} \\ &= -\frac{GM}{a} \frac{\cosh u - |\cos v|}{\sinh^2u + \sin^2v} \end{align} \]

Problem 2.7

The an answer is No

Outside a bounded mass, the Newtonian potential is determined only by the multipole moments of the interior density. Saying

\[ \Phi(r) = -\frac{GM}{r} \quad\text{for } r > R \]

is equivalent to saying that all exterior multipoles with \(l \geq 1\) vanish. This is only possible if the density is spherically symmetric inside \(r < R\). That does not force the interior density to be spherically symmetric, only that the integrated multipole moments are zero.

As an example consider a spherically symmetric mas \(M_0\) and add two thin concentric shells at radiia \(0 < b < a < R\), whose surface densities are given by

\[ \Sigma_a(\Omega) = \Sigma_{0,a} + \epsilon Y_{20}(\Omega), \quad \Sigma_b(\Omega) = \Sigma_{0,b} - \epsilon (a / b)^2 Y_{20}(\Omega), \]

For a thin shell at radius \(r\), the exterior \(l = 2\) coefficient scales as \(r^2\) times the shell's \(Y_{20}\) coefficient. TThus the two sheel give equal and opposite contributions to the total \(l=2\) multipole moment for \(r > a\). The next exterior potential for \(r > R\) is exactly \(-GM/r\) but the interior density is not spherically symmetric.

Problem 2.8

For a density mass-to-light ratio \(\Upsilon\) we know that \(\rho(r) = \Upsilon j(r)\), and from (Problem 1.3)[./chapter01.3.md] the mass density is

\[ \rho(r) = -\frac{\Upsilon}{2\pi r}\frac{dS}{dr}, \]

therefore the potential energy is

\[ \begin{align} \Phi(r) &= - 4\pi G \left[\frac{1}{r}\int_0^r dr' \, r'^2 \rho(r') + \int_r^{+\infty} dr' \, r' \rho(r')\right] \\ &= -4\pi G \left[-\frac{\Upsilon}{2\pi r}\int_0^r dr' \, r' \frac{dS}{dr'} - \frac{\Upsilon}{2\pi}\int_r^{+\infty} dr' \, \frac{dS}{dr'}\right] \\ &= 2G\Upsilon \left[ \frac{1}{r}\left(rS(r) - \int_0^r dr'\, S(r')\right) - S(r)\right] \\ &= -\frac{2G\Upsilon}{r}\int_0^r dr' \, S(r') \end{align} \]

Problem 2.9

\[ \begin{align} \int_0^\infty dR\, I(R) &= 2\int_0^\infty dR \int_R^\infty dr \, \frac{r j(r)}{\sqrt{r^2 - R^2}} \\ &= 2\int_0^\infty dr \, r j(r) \int_0^r \frac{dR}{\sqrt{r^2 - R^2}} \\ &= \frac{2}{\Upsilon}\int_0^\infty dr \, r \rho(r) \cdot \frac{\pi}{2} \\ &= -\frac{\Phi(0)}{4G\Upsilon} \end{align} \]

Problem 2.10

a. Quadrupole expansion

Consider an axisymmetric density distribution \(\rho(R, z)\) with total mass \(M\). Since the density is axisymmetric, \(\rho_{lm} = \delta_{m0} \rho_{l0}\), and

\[ \rho_{l0}(a) = \int d\Omega Y_{l0}^*(\Omega) \rho(a, \Omega), \]

furthermore, since \(\rho(R, z) = R(\rho, -z)\), all odd \(l\) terms vanish. Thus, the multipole expansion reduces to

\[ \begin{align} \Phi(r, \Omega) &= -4\pi G\sum_{l, \, \text{even}} \frac{Y_{l0}(\Omega)}{2l + 1}\left[\frac{1}{r^{l+1}}\int_0^r da \, a^{l+2} \rho_{l0}(a) + r^l \int_r^\infty da \, a^{1-l} \rho_{l0}(a)\right] \\ &= -4\pi G\sum_{l, \, \text{even}} \frac{Y_{l0}(\Omega)}{2l + 1}\left[\frac{1}{r^{l+1}}\int_0^r da \, a^{l+2} \int d\Omega' Y_{l0}^*(\Omega') \rho(a, \Omega') + r^l \int_r^\infty da \, a^{1-l} \int d\Omega' Y_{l0}^*(\Omega') \rho(a, \Omega')\right] \\ &= -4\pi G\sum_{l, \, \text{even}} \frac{Y_{l0}(\Omega)}{2l + 1}\left[\frac{1}{r^{l+1}}\int_0^r d^3\mathbf{x}' \, a^{l} Y_{l0}^*(\Omega') \rho(\mathbf{x}') + r^l \int_r^\infty d^3\mathbf{x}' \, a^{-l-1} Y_{l0}^*(\Omega') \rho(\mathbf{x}')\right] \\ &\equiv \sum_{l, \, \text{even}} \Phi_l(r, \Omega) \end{align} \]

Monopole term (\(l=0\))

\[ Y_{00}(\Omega) = 1/\sqrt{4\pi} \]

thus

\[ \begin{align} \Phi_0(r, \Omega) &= -G \left[\frac{1}{r}\int_0^r d^3\mathbf{x}' \, \rho(\mathbf{x}') + \int_r^\infty d^3\mathbf{x}' \, \frac{1}{a'} \rho(\mathbf{x}')\right] \\ &= -\frac{GM}{r} - G\int_r^\infty d^3\mathbf{x}' \, \frac{1}{a'} \rho(\mathbf{x}'), \end{align} \]

where we have used the fact that \(r > r_{\rm max}\).

Quadrupole term (\(l=2\))

\[ Y_{20}(\Omega) = \sqrt{\frac{5}{4\pi}} \frac{1}{2}(3\cos^2\theta - 1) \]

thus

\[ \begin{align} \Phi_2(r, \Omega) &= -\frac{(3 \cos^2\theta - 1)G}{4r^3}\int_0^r d^3\mathbf{x}' \, a'^{2} (3\cos^2\theta' - 1) \rho(\mathbf{x}') \\ & - \frac{(3 \cos^2\theta - 1)Gr^2}{4}\int_r^\infty d^3\mathbf{x}' \, a'^{-3} (3\cos^2\theta' - 1) \rho(\mathbf{x}') \\ &= -\frac{3z^2 - r^2}{4r^5} G \int d^3\mathbf{x}' \, (3z'^2 - a'^2) \rho(\mathbf{x}') \\ &- \frac{3z^2 - r^2}{4} Gr^2 \int d^3\mathbf{x}' \, \frac{(3z'^2 - a'^2)}{a'^5} \rho(\mathbf{x}') \end{align} \]

Adding the two terms we obtain

\[ \Phi(R, z) \approx -\frac{GM}{r} - \frac{G}{4}\frac{R^2 - 2z^2}{r^5}\int d^3\mathbf{x}' \, (R'^2 - 2z'^2) \rho(\mathbf{x}') \]

b. Exponential disk

For \(\rho(R, z) = \Sigma_0\exp(-R/R_d)\delta(z)\) we have

\[ \begin{align} \Phi(R, z) &\approx -\frac{GM}{r} - \frac{G}{4}\frac{R^2 - 2z^2}{r^5}\int_0^\infty dR' \, R' \int_0^{2\pi} d\phi' \, (R'^2 \cos^2\phi' - 2\cdot 0^2) \Sigma_0 e^{-R'/R_d} \\ &= -\frac{GM}{r} - \frac{G\pi \Sigma_0}{2}\frac{R^2 - 2z^2}{r^5}\int_0^\infty dR' \, R'^3 e^{-R'/R_d} \\ &= -\frac{GM}{r} - 3\pi G \Sigma_0 R_d^4 \frac{R^2 - 2z^2}{r^5} \\ &= -\frac{GM}{r} - \frac{3\pi GM}{2} \frac{R^2 - 2z^2}{r^5} \end{align} \]

References