Skip to content

Problems 21-24

Problem 2.21

Define

\[ \begin{align} I(R, R', z) &\equiv \int_0^{2\pi}d\phi' \, \frac{1}{(R^2 + R'^2 - 2RR'\cos\phi' + z^2)^{1/2}} \\ &= \int_0^{2\pi}d\phi' \, \frac{1}{((R - R')^2 + z^2 + 4RR'\sin^2(\phi'/2))^{1/2}} \\ &= \int_0^{2\pi}d\phi' \, \frac{1}{((R + R')^2 + z^2 - 4RR'\cos^2(\phi'/2))^{1/2}} \\ &= \int_0^{2\pi}d\phi' \, \frac{1}{(a^2 - b^2\cos^2(\phi'/2))^{1/2}} \quad a^2 \equiv (R + R')^2 + z^2, \, b^2 \equiv 4RR' \\ &= 2\int_0^{\pi}d\theta \, \frac{1}{(a^2 - b^2\cos^2\theta)^{1/2}} \quad\text{with } \theta = \phi'/2 \\ &= 2\int_0^{\pi}d\theta \, \frac{1}{(a^2(1 - k^2) + a^2k^2\sin^2\theta)^{1/2}} \quad k^2 \equiv \frac{b^2}{a^2} = \frac{4RR'}{(R + R')^2 + z^2} \\ &= \frac{2}{a}\int_0^{\pi}d\theta \, \frac{1}{(1 - k^2\sin^2\theta)^{1/2}} \\ &= \frac{4}{\sqrt{(R + R')^2 + z^2}}K(k), \end{align} \]

where

\[ K(k) = \int_0^{\pi/2} \frac{d\theta}{(1 - k^2\sin^2\theta)^{1/2}}. \]

For a thin axisymmetric disk with density \(\rho(R, z) = \Sigma(R)\delta(z)\), the potential is thus

\[ \begin{align} \Phi(R, z) &= -G\int_0^{\infty}R'dR'\int_0^{2\pi}d\phi' \, \frac{\Sigma(R')\delta(z')}{(R^2 + R'^2 - 2RR'\cos\phi' + (z - z')^2)^{1/2}} \\ &= -G\int_0^{\infty}R'dR' \,\Sigma(R') \, I(R, R', z) \\ &= -4G\int_0^{\infty}dR' \, \frac{R'\Sigma(R')}{\sqrt{(R + R')^2 + z^2}}K(k). \end{align} \]

Now we just need to massage this expression a bit. From the deinifition of \(k\), we have

\[ \sqrt{(R + R')^2 + z^2} = \frac{2\sqrt{RR'}}{k}, \]

therefore

\[ \frac{R'}{((R + R')^2 + z^2)^{1/2}} = \frac{k}{2}\sqrt{\frac{R'}{R}}, \]

and the integral above becomes

\[ \Phi(R, z) = -\frac{2G}{\sqrt{R}}\int_0^{\infty}dR' \, \Sigma(R') k K(k)\sqrt{R'}. \]

Problem 2.22 🌶️

For a thin disk with surface density profile \(\Sigma(\mathbf{R}')\) the potential on the plane is

\[ \Phi(\mathbf{R}, 0) = -G \int d^2\mathbf{R}' \, \frac{\Sigma(\mathbf{R}')}{|\mathbf{R} - \mathbf{R}'|}. \]

Laplacian on the plane

Define \(\nabla^2_\perp = \partial^2_x + \partial^2_y\), then

\[ \nabla^2_\perp \Phi(\mathbf{R}, 0) = -G \int d^2\mathbf{R}'' \, \Sigma(\mathbf{R}'') \nabla^2_\perp \frac{1}{|\mathbf{R} - \mathbf{R}''|}. \]

Define \(I(\mathbf{R}')\) as

\[ \begin{align} I(\mathbf{R}') &\equiv \int d^2\mathbf{R} \, \frac{1}{|\mathbf{R} - \mathbf{R}'|} \nabla^2_\perp \Phi(\mathbf{R}, 0) \\ &= \int d^2\mathbf{R} \, \frac{1}{|\mathbf{R} - \mathbf{R}'|} \left[ -G \int d^2\mathbf{R}'' \, \Sigma(\mathbf{R}'') \nabla^2_\perp \frac{1}{|\mathbf{R} - \mathbf{R}''|} \right] \\ &= -G \int d^2\mathbf{R}'' \, \Sigma(\mathbf{R}'') \int d^2\mathbf{R} \, \frac{1}{|\mathbf{R} - \mathbf{R}'|} \nabla^2_\perp \frac{1}{|\mathbf{R} - \mathbf{R}''|} \\ &= -G \int d^2\mathbf{R}'' \, \Sigma(\mathbf{R}'') \, K(\mathbf{R}', \mathbf{R}'') \end{align} \]

Where we have defined

\[ \begin{align} K(\mathbf{R}', \mathbf{R}'') &= \int d^2\mathbf{R} \, \frac{1}{|\mathbf{R} - \mathbf{R}'|} \nabla^2_\perp \frac{1}{|\mathbf{R} - \mathbf{R}''|} \\ &= \int d^2\mathbf{u} \, \frac{1}{|\mathbf{u}|} \nabla^2_\perp \frac{1}{|\mathbf{u} + \mathbf{R}' - \mathbf{R}''|} \quad\text{with } \mathbf{u} = \mathbf{R} - \mathbf{R}'' \\ &= K(\mathbf{R}' - \mathbf{R}'') = K(\mathbf{\Delta}) \quad\text{with } \mathbf{\Delta} = \mathbf{R}' - \mathbf{R}''. \end{align} \]

Interpreting the kernel

If we define \(\varphi(\mathbf{R}) = 1 / |\mathbf{R}|\), then from our definition of \(K\) we can see that it is nothing but the convolution of \(\varphi\) with \(\nabla^2_\perp \varphi\):

\[ K(\mathbf{\Delta}) = (\varphi * \nabla^2_\perp \varphi)(\mathbf{\Delta}). \]

So its Fourier transform is simply the product of the Fourier transforms of each function:

\[ \begin{align} \tilde{K}(\mathbf{k}) &= \tilde{\varphi}(\mathbf{k}) \cdot \mathcal{F}\{\nabla^2_\perp \varphi\}(\mathbf{k}) = \tilde{\varphi}(\mathbf{k}) \cdot (-k^2) \tilde{\varphi}(\mathbf{k}) = -k^2 |\tilde{\varphi}(\mathbf{k})|^2 \\ &= -k^2 \cdot\left( \frac{2\pi}{k} \right)^2 = -4\pi^2, \end{align} \]

Therefore, the inverse Fourier transform is

\[ K(\mathbf{\Delta}) = \mathcal{F}^{-1}\{\tilde{K}(\mathbf{k})\}(\mathbf{\Delta}) = -4\pi^2 \delta^{(2)}(\mathbf{\Delta}) = -4\pi^2 \delta^{(2)}(\mathbf{R}' - \mathbf{R}''). \]

Putting it all together

\[ \begin{align} I(\mathbf{R}') &= -G \int d^2\mathbf{R}'' \, \Sigma(\mathbf{R}'') \, K(\mathbf{R}' - \mathbf{R}'') \\ &= 4\pi^2 G \int d^2\mathbf{R}'' \, \Sigma(\mathbf{R}'') \, \delta^{(2)}(\mathbf{R}' - \mathbf{R}'') \\ &= 4\pi^2 G \Sigma(\mathbf{R}') \\ &= \int d^2\mathbf{R} \, \frac{1}{|\mathbf{R} - \mathbf{R}'|} \nabla^2_\perp \Phi(\mathbf{R}, 0). \end{align} \]

That is

\[ \Sigma(x', y') = \frac{1}{4\pi^2 G} \iint dx\, dy \, \frac{1}{|\mathbf{R} - \mathbf{R}'|} \left( \frac{\partial^2\Phi}{\partial x^2} + \frac{\partial^2\Phi}{\partial y^2} \right). \]

Problem 2.23

With \(\mathbf{r} = (l, m, n)\) and \(\mathbf{k} = (k_x, k_y, k_z)\)

\[ \begin{align} (\nabla^2 \Phi)_{\mathbf{r}} &= \sum_{\mathbf{k}} \frac{\hat{\Phi}_{\mathbf{k}}}{\Delta^2}\left(e^{2\pi i (k_x(l+1) + k_ym + k_zn)/K} + e^{2\pi i (k_x(l-1) + k_ym + k_zn)/K} \right.\\ &\quad + \left.\cdots - 6e^{2\pi i (k_xl + k_ym + k_zn)/K}\right) \\ &= \sum_{\mathbf{k}} \frac{\hat{\Phi}_{\mathbf{k}}}{\Delta^2}\left( e^{2\pi i k_x/K} e^{2\pi i \mathbf{k}\cdot\mathbf{r}/K} + e^{-2\pi i k_x/K} e^{2\pi i \mathbf{k}\cdot\mathbf{r}/K} \right. \\ &\quad + \left. \cdots - 6e^{2\pi i \mathbf{k}\cdot\mathbf{r}/K} \right) \\ &= \sum_{\mathbf{k}} \frac{\hat{\Phi}_{\mathbf{k}}}{\Delta^2} \left(2\cos(2\pi k_x/K) + 2\cos(2\pi k_y/K) + 2\cos(2\pi k_z/K) - 6 \right) e^{2\pi i \mathbf{k}\cdot\mathbf{r}/K} \\ &= \sum_{\mathbf{k}} \frac{2\hat{\Phi}_{\mathbf{k}}}{\Delta^2} (\cos(2\pi k_x/K) + \cos(2\pi k_y/K) + \cos(2\pi k_z/K) - 3) e^{2\pi i \mathbf{k}\cdot\mathbf{r}/K} \\ &= 4\pi G \rho_{\mathbf{r}} \\ &= 4\pi G \sum_{\mathbf{k}} \hat{\rho}_{\mathbf{k}} e^{2\pi i \mathbf{k}\cdot\mathbf{r}/K}. \end{align} \]

From which,

\[ \hat{\Phi}_{\mathbf{k}} = \frac{2\pi G \Delta^2}{\cos(2\pi k_x/K) + \cos(2\pi k_y/K) + \cos(2\pi k_z/K) - 3} \hat{\rho}_{\mathbf{k}}. \]

Problem 2.24

a. Force on a shell

The density for the system can be written as

\[ \rho(r) = \sum_{n=1}^N \frac{m_n}{4\pi r_n^2}\delta(r - r_n). \]

The force at radius \(r_{n - 1} < r < r_n\) is completely determined by the mass interior to \(r\):

\[ \mathbf{F}(r) = -\frac{GM(r)}{r^2}\hat{e}_r = -\frac{G}{r^2}\left( \sum_{j=1}^{n - 1} m_j \right)\hat{e}_r = -\frac{GM_n}{r^2}\hat{e}_r. \]

The for on the shell at \(r_n\) is then

\[ \mathbf{F}_n = \frac{GM_n}{r_n^2}\hat{e}_r. \]

b. Computational complexity

The enclosed mass \(M_n\) can be computed in \(\mathcal{O}(N)\) operations by precomputing the cumulative sum of the masses: \(M_n = M_{n-1} + m_n\).

After each \(M_n\) is known, computing the force on each shell is \(\mathcal{O}(1)\), so the total complexity for computing the forces on all shells is \(\mathcal{O}(N)\).

The total computational complexity is therefore \(\mathcal{O}(N)\).

References